Data Structures - Assignment no. 2

Remarks:
- Write both your name and your ID number very clearly on the top of the exercise. Write your exercises in pen, or in clearly visible pencil. Please write very clearly.
- Give correctness and complexity proofs for every algorithm you write.
- For every question where you are required to write pseudo-code, also explain your solution in words.

1. (a) Implement, in pseudo-code, a ternary (base-3) counter: You are given an infinite array such that each cell can only hold the digits 0,1,2, and you want the counter to support the operation \textit{increment()} that increases the value of the counter by 1.
(b) Suppose you start from a counter initialized to 0 and you perform \textit{m increment()} operations. What is their total cost? What is the amortized time complexity of increment? Prove your answer.

2. The pre-order read of a binary tree is the sequence of elements that are printed by the following procedure:

\begin{verbatim}
PRE-ORDER(v)
IF (v = null) RETURN
ELSE
 PRINT v.key
 PRE-ORDER(v.left)
 PRE-ORDER(v.right)
RETURN
\end{verbatim}

The post-order read of a binary tree is the sequence of elements that are printed by the following procedure:

\begin{verbatim}
POST-ORDER(v)
IF (v = null) RETURN
ELSE
 POST-ORDER(v.left)
 POST-ORDER(v.right)
 PRINT v.key
RETURN
\end{verbatim}
The in-order read of a binary tree is the sequence of elements that are printed by the following procedure:

```
IN-ORDER(v)
IF (v = null) RETURN
ELSE
    IN-ORDER(v.left)
    PRINT v.key
    IN-ORDER(v.right)
RETURN
```

(a) Give a tree with at least 3 nodes (all nodes must have different keys) such that both its in-order read and its pre-order read are the same, or prove that there is no such tree.

(b) Give a tree with at least 3 nodes (all nodes must have different keys) such that both its in-order read and its post-order read are the same, or prove that there is no such tree.

(c) Give a tree with at least 3 nodes (all nodes must have different keys) such that both its pre-order read and its post-order read are the same, or prove that there is no such tree.

3. You are given a binary search tree, where each node contains a pointer `left` to its left child, a pointer `right` to its right child, a pointer `parent` to its parent, and a key `key`. The keys are integers that can be positive, negative or zero. Describe a procedure that performs the following operation, and then write pseudo-code for it: The operation is given a pointer to the root of the tree, and needs to output the number of nodes who have the property that the sum of the keys in the node’s sub-tree is positive. The procedure should take $O(n)$ time, where n is the number of nodes in the tree.

Hint: Recursion may help.

4. Define the vertex-depth of a tree to be the distance between its root and the furthest leaf, measured in vertices, not in edges. For example, the depth of a tree which contains a single vertex is 1. The depth of an empty tree is 0.

A binary search tree is called a valid AVL tree if for each node v the following condition holds: Let v_1, v_2 be v’s children. Then we require that the difference between the depth of the subtree whose root is v_1 and the depth of the subtree whose root is v_2 is -1, 0, or $+1$.

For example, Figure ?? depicts a valid AVL tree (the keys are not listed).

(a) Prove that a valid AVL tree of depth d always has at least F_d vertices, where F_d is the d’th Fibonacci number. ($F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$). (Hint: use induction on d).

(b) Let T be a valid AVL tree with n vertices. Prove that the depth of T is $O(\log n)$. You may use item (a).
5. Find the order of growth for the following recursively given functions (you may use the Master Method).

(a) \(T(n) = 4T(n/2) + n \)
(b) \(T(n) = 4T(n/2) + n^2 \)
(c) \(T(n) = 4T(n/2) + n^3 \)
(d) Explain why \(T(n) = 2T(n/2) + n \log^2 n \) cannot be solved using the Master Method.

6. Find the order of growth for the following recursively given functions. Explain your answer.

(a) \(T(n) = T(n - a) + T(a) + n \) where \(a \geq 1 \) is constant.
(b) \(T(n) = T(cn) + T((1 - c)n) + n \) where \(0 < c < 1 \) is a constant.
(c) \(T(n) = 2T(n/2) + n \log^4 n \) (Hint: The approach to solving this is similar to the approach to solving \(T(n) = 2T(n/2) + n \)).